乐玩体育平台-(中国)科技公司,

您当前所在位置: 乐玩体育平台-(中国)科技公司, > 学术动态 > 正文

林学院举行系列学术讲座——林木遗传育种与生物技术创新平台聘请外国专家特色项目

日期:2017-09-05 点击数:

应我校“聘请外国专家特色项目”和“国家自然科学基金项目(31270666)”的邀请,维也纳自然资源和生命科学大学Prof. Douglas L. Godbold将围绕Underground Ecology进行为期约一个月的全英文系列学术讲座(授课与研讨)。讲座内容主要包括:(1)Forest soil: Plant-soil interactions; Heavy metals in plants and soils; Aluminium in plants and soils; Salinity; (2) Element cycling: C inputs to forest soils; Soil and root respiration; Nutrient cycling; Methods in ecological research—Measurements of nutrient cycling, Measurements of root and soil respiration.“聘请外国专家特色项目”的运行周期为3年,今年为该项目实施的第2年。

欢迎广大研究生同学踊跃报名参加。授课时间和地点请与硕士研究生曲美学同学联系。

邮 箱:863283892 @qq.com

QQ群:147761029

手 机:18846126854

授课人简介:

Prof. Douglas L. Godbold,维也纳自然资源和生命科学大学(原维也纳农业大学)教授,世界知名的林学家和森林生态学家。担任Forestry与Journal of Plant Nutrition & Soil Science两个期刊的编委。是以下国际主流刊物的特约审稿人:Plant & Soil、Canadian Journal of Forestry Research、Forest Ecology & Management、Tree Physiology、Global Change biology、Water Air & Soil Pollution、Plant Ecology、Canadian Journal of Botany、Chemosphere Ecology Letters、Environmental Pollution、Journal of Arid Environments、Journal of Environmental Quality、Journal of Experimental Botany、Journal of Plant Physiology、Journal of Tropical Ecology、New Phytologist、Pedobiologia、Plant Cell & Environment、Plant Physiology & Biochemistry、Scanning Microscopy。

1、主要学习经历

1976—1979年,英国苏塞克斯大学(University of Sussex)生物系,理学学士;1979—1983,英国利物浦大学(University of Liverpool)植物系,博士;1983—1985,德国哥廷根大学(University of Gõttingen)森林植物研究所,博士后.

2、主要工作经历

1984—1986,德国哥廷根大学(University of Gõttingen),森林植物研究所,皇家学会研究奖学金;1986—1997,德国哥廷根大学(University of Gõttingen),森林植物研究所,研究员;其中1992年,加拿大埃德蒙顿阿尔伯塔大学,植物系,访问科学家;1995—1996,美国哈佛大学生物和进化生物学系,Charles Bullard Fellowship奖学金;1998—2011,英国班戈大学(Bangor University),环境、自然资源和地理学院,森林科学教授;2011—至今,维也纳自然资源和生命科学大学,森林生态研究所,森林生态学教授.

3、近期代表文章

(1)Mycorrhizas and soil ecosystem function of co-existing woody vegetation islands at the alpine tree line. Plant and Soil, 2017, 411: 467–481

(2)Response of soil microbial community to afforestation with pure and mixed species. Plant and Soil, 2017. DOI: 10.1007/s11104-016-3073-0

(3)Turbulent energy and carbon dioxide exchange along an early‐successional windthrow chronosequence in the European Alps. Agricultural and Forest Meteorology, 2017, 232, 576-594

(4)Increase in heterotrophic soil respiration by temperature drives decline in soil organic carbon stocks after forest windthrow in a mountainous ecosystem. Functional Ecology, 2017. DOI: 10.1111/1365-2435.12805

(5)Elevated CO2 and Tree Species Affect Microbial Activity and Associated Aggregate Stability in Soil Amended with Litter. Forests, 2017, 8, 70; doi:10.3390/f8030070.

(6)Deforestation and land use strongly effect soil organic carbon and nitrogen stock in Northwest Ethiopia. Catena, 2017, 153, 89-99.

(7)Evaluation of the microbiome of decaying alder nodules by next generation sequencing. Endocytobiosis and Cell Research, 2017.

(8)Adaptive root foraging strategies along a boreal-temperate forest gradient. New Phytologist, 2017. doi: 10.1111/nph.14643.

(9)Fine root morphology, biochemistry and litter quality indices of fast- and slow-growing woody species in Ethiopian highland forest. Ecosystems, 2017.

(10)Fine root dynamics in Afromontane forest and adjacent land uses in the northwest Ethiopian highlands. Forests 2017, 8, 249; doi:10.3390/f8070249

(11)Tree species identity influences the vertical distribution of labile and recalcitrant carbon in a temperate deciduous forest soil. Forest Ecology & Management, 2016, 359:352-360

(12)Overyielding of temperate deciduous tree mixtures is maintained under throughfall reduction. Plant & Soil, 2016, DOI 10.1007/s11104-016-2930-1

(13)Potassium fertilization affects the distribution of fine roots but does not change ectomycorrhizal community structure. Annals of Forest Science, 2016, DOI 10.1007/s13595-016-0556-3

(14)Elevated Atmospheric CO2 Affects Ectomycorrhizal Species Abundance and Increases Sporocarp Production under Field Conditions. Forests. 2015, 6(4):256-1273.

(15)Bacterial growth and respiration responses upon rewetting dry forest soils: Impact of drought-legacy. Soil Biol Biochem. 2013, 57: 477-486.

(16)Elevated atmospheric CO2 and humidity delay leaf fall in Betula pendula, but not in Alnus glutinosa or Populus tremula×tremuloides. Ann Forest Sci. 2014, 71(8): 831-842.

(17)Elevated CO2 enrichment induces a differential biomass response in a mixed species temperate forest plantation. New Phytol. 2013, 198(1):156-168.

(18)Effects of Elevated CO2 on Litter Chemistry and Subsequent Invertebrate Detritivore Feeding Responses. Plos One. 2014: 9(1)(19)It’s Complicated: Intraroot System Variability of Respiration and Morphological Traits in Four Deciduous

Tree Species. Plant Physiol. 2014, 166(2):736-745.

(20)Deciduous woodland exposed to elevated atmospheric CO2 has species-specific impacts on anecic earthworms. Appl Soil Ecol. 2014, 80: 84-92.

(21)The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: role in carbon cycling. Plant & Soil. 2013, 366(1-2): 1-27.

(22)Bacterial growth and respiration responses upon rewetting dry forest soils: Impact of drought-legacy. Soil Biol Biochem. 2013, 57: 477-486.

(23)Drivers of increased soil respiration in a poplar coppice exposed to elevated CO2. Plant & Soil. 2013; 362(1-2): 93-106(24)Tree species diversity interacts with elevated CO2 to induce a greater root system response. Global Change Biol. 2013, 19(1):

217-228.

(25)Evaluation of methods to estimate production, biomass and turnover of ectomycorrhizal mycelium in forests soils-A review. Soil Biol Biochem. 2013, 57: 1034-1047.

(26)Bacterial salt tolerance is unrelated to soil salinity across an arid agroecosystem salinity gradient. Soil Biol Biochem. 2011, 43, 1881-1887.

(27)Free atmospheric CO2 enrichment (FACE) did not affect symbiotic N2-fixation or soil carbon content and stabilization in a mixed deciduous stand in Wales. Biogeosciences, 2010, 8, 353-364.